

IBM Research, Zurich

Efficient Attributes for Anonymous Credentials

Jan Camenisch and Thomas Gross

Overview

- Introduction: Access with electronic identity cards
- Basis: Camenisch-Lysyanskaya signatures
- Problem Statement: Efficient finite set attributes
- Key Ideas: Prime number encoding and divisibility
- Efficiency

Getting Access to a Vernissage

Policy:

"free entry: must be retired OR entitled to social benefit OR a teacher OR a poor grad student...

... on hunt for free food"

EID Card Limitations

Limited RAM

N° carte / Card No

- Only pure modular exponentiation
 - very expensive

Sexe / Sex

Nom / Name

Prénoms / Given names

EID Card Attributes

- Identification number
- Name, first name
- Date of birth
- Nationality
- Place of birth
- Profession
- Social benefit status
 - Eye and hair color
 - Sex...

Sexe / Sex

Basis: Camenisch-Lysyanskaya Signatures

[Camenisch & Lysyanskaya '01]

Public key of signer: RSA modulus n and a_i , b, d $\in QR_n$

Secret key: factors of n

Signature of L attributes m1, ..., mL $\in \{0,1\}^{\ell}$: (c,e,s)

For random prime $e > 2^{\ell}$ and integer $s \approx n$, compute c such that

$$d = a_1^{m1} \cdot ... \cdot a_n^{mL} b^s c^e \mod n$$

Theorem: Signature scheme is secure against adaptively chosen message attacks under SRSA assumption.

[SRSA: Barić & Pfitzmann '97 and Fujisaki & Okamoto '97]

Basis: Camenisch-Lysyanskaya Signatures

[Camenisch & Lysyanskaya '01]

Public key of signer: RSA modulus n and a_i , b, d $\in QR_n$

Secret key: factors of n

Signature of L attributes m1, ..., mL $\in \{0,1\}^{\ell}$: (c,e,s)

For random prime $e > 2^{\ell}$ and integer $s \approx n$, compute c such that

$$d = a_1^{m1} \cdot ... \cdot a_n^{mL} b^s c^e \mod n$$

Theorem: Signature scheme is secure against adaptively chosen message attacks under SRSA assumption.

[SRSA: Barić & Pfitzmann '97 and Fujisaki & Okamoto '97]

Basis: Camenisch-Lysyanskaya Signatures

[Camenisch & Lysyanskaya '01]

Signature of L attributes m1, ..., mL $\in \{0,1\}^{\ell}$: (c,e,s)

For random prime $e > 2^{\ell}$ and integer $s \approx n$, compute c such that

$$d = \underbrace{a_1^{m1} \cdot ... \cdot a_L^{mL}}_{1} \quad b^s \quad c^e \mod n$$

L attribute bases one base per attribute mi

blinding

SRSA problem instance

Proofs of possession:

O(L) mod-exp complexity

→ Invites for a nap

constant

constant

"Piled Higher and Deeper" by Jorge Cham www.phdcomics.com

Problem Statement

Enable Camenisch-Lysyanskaya signatures to compress *all* binary and finite set attributes in *one* dedicated attribute base.

Efficiency:

- Proofs of possession linear in the free-form attributes: O(I), binary and finite set attributes only as small constant overhead.
- Proofs of relationships with efficient toolbox for AND, NOT, OR.

Security:

- Signature scheme is secure against adaptively chosen message attacks under SRSA assumption.
- Attribute encoding is integer under SRSA assumption.

Key Ideas: Prime Encoding...

[Compare to Camenisch & Lysyanskaya '02]

Idea: Encode attribute values as prime numbers.

- **SETUP**: Certify a small public prime number *ei* for each value realization of a binary or finite-set attribute.
- **ISSUE**: Product of prime numbers $E=\Pi(ei)$ in a single dedicated base.
- → Compression of k binary and finite-set attributes in one base

Realization:

Signature of L attributes m1, ..., mL $\in \{0,1\}^{\ell}$: (c,e,s)

With k binary or finite set attributes and I string attributes

$$d = a_0^{\Pi ei} \cdot a_1^{m1} \cdot ... \cdot a_l^{ml} \quad b^s \quad c^e \mod n$$

Key Ideas: ... and Divisibility

Idea: Use coprime/divisibility to prove attribute presence and absence.

PROOF: Selectively disclose attribute primes $\Pi(ej)$ and prove knowledge of remaining factorization $E' = \Pi_{i \neq j}(ei)$ of the compound attribute $\Pi(ei)$.

→ Efficient proof methods for AND, NOT, OR statements.

Realization:

Proof of Knowledge of AND with prime attributes:

• PK{(e, E', m1, ..., ml, s):

$$d := c'^e \cdot (a_0^{\Pi(ej)})^{E'} \cdot a_1^{m1} \cdot ... \cdot a_1^{ml} b^s \mod n ...$$

Efficiency: Asymptotic Modular Exponentiations

	Base Encoding	Bit Vector Encoding	Prime encoding
Bases & Possession	O(L)	O (l)	O(I)*
AND (i attributes)	O (L)	O(L+i)	O(I)*
NOT	O (L)	O (L)	O(I)*
OR (i attributes)	O(L+i)	O(L+i)	O(I)**

^{*)} Small constant overhead to proof of possession (1-2 mod-exp).

^{**)} Constant overhead of 18 mod-exp. over proof of possession. Break even points, e.g. k=5 binary attributes, i=2 shown.

Summary

Advantages

- Constant mod-exps for binary flags & finite sets
- Efficient proofs for AND, NOT, OR
- Compact credentials:
 Save k-1 attribute bases

Limitations

- Free-form attributes
- A priori vocabulary

Public key overhead:k * |mi| * |ei|

Conclusion: 80/20 solution where finite sets matter

BACKUP

Recall: The Strong RSA Assumption

Flexible RSA Problem: Given RSA modulus n and $z \in QR_n$ find integers e and u such that

$$u^{\ell} = z \mod n$$

```
(Recall: QR_n = \{x : \text{exist } y \text{ s.t. } y^2 = x \mod n\})
```

- Introduced by Barić & Pfitzmann '97 and Fujisaki & Okamoto '97
- Hard in generic algorithm model [Damgård & Koprowski '01]

Signature Scheme based on the SRSA I

[Camenisch & Lysyanskaya '02]

Public key of signer: RSA modulus n and a_i , b, d ϵ QR_n , Q

Secret key: factors of n

To sign k messages m1, ..., mk ϵ {0,1} $^{\ell}$:

- choose random prime e > 2^ℓ and integer s ≈ n
- compute c such that

$$d = a_1^{m1} \cdot ... \cdot a_k^{mk} b^s c^e \mod n$$

signature is (c,e,s)

Signature Scheme based on the SRSA II

A signature (c,e,s) on messages m1, ..., mk is valid iff:

- m1, ..., mk $\in \{0,1\}^{\ell}$:
- . e > 2^l
- $d = a_1^{m1} \cdot ... \cdot a_k^{mk} b^s c^e \mod n$

Theorem: Signature scheme is secure against adaptively chosen message attacks under SRSA assumption.

Proof of Knowledge of a Signature

Observe:

Let
$$c' = c b^{s'} \mod n$$
 with random s'
then $d = c' a_1^{m1} \cdot \ldots \cdot a_k^{mk} b^{s*}$ (mod n), with $s* = s-es'$
i.e., $(c', e, s*)$ is a also a valid signature!

Therefore, to prove knowledge of signature on some m

- provide c'
- PK{(e, m1, ..., mk, s): $d := c^{e} a_{1}^{m1} \cdot ... \cdot a_{k}^{mk} b^{s}$ $\land mi \in \{0,1\}^{\ell} \land e \in 2^{\ell+1} \pm \{0,1\}^{\ell} \}$

Proof of Knowledge of a Signature

Using second Commitment

assume second group \mathbf{n} , \mathbf{a} , \mathbf{b} , \mathbf{n} 2nd commitment $\mathbf{C} = \mathbf{a}_{1}^{sk} \mathbf{b}^{s*}$

To prove knowledge of signature on some m provide c'

$$C = a_1^{m1}b^{s*} \wedge d := c'^e a_1^{m1} \cdot ... \cdot a_k^{mk}b^s$$
 }